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Abstract

Usually VLBI observations are adjusted by least-squares approaches like the Gauss-Markoff model
with the use of normal equations. It is well known that parameter estimation methods based on this
strategy show some numerical disadvantages. To overcome these problems a new approach makes
use of a more stable least-squares algorithm, called singular value decomposition (SVD) and provides
interesting insight into the composition of the estimated parameters and shows the impact of particular
observations on the parameters.

For an example VLBI session the results of the new method will be presented and the suitability
of the SVD approach for simulations and for the improvement of VLBI schedules will be shown.

1. Introduction

In many scientific analyses or engineering problems it is necessary to determine parameters of
a linear (or linearized) model after performing (many) more measurements than necessary for a
unique solution. This leads to an overdetermined system of linear equations which is commonly
solved in a least-squares sense by e.g. using the Gauss-Markoff-Model (see e.g. KocH, [2]).
Many VLBI data analysis software packages use this approach for the determination of e.g. earth
orientation parameters, site positions, etc. One of the most common (and simple) methods for the
estimation of the parameters in the model

Ax=b with Sy =02 P! (1)

is based on solving a system of normal equations, i.e. by using the well-known formula

%x=(A'PA)"'A'P b and X =67 - (A'PA)7Y, (2)
with

A the design matrix (or Jacobi matrix) containing the partial derivatives of the
observations equation with respect to the parameters to be determined
(= functional model). A’ means the transpose of this matrix,
P the weight matrix as the inverse of the variance/covariance matrix
(= stochastical model),
b, X  the vector of observations (also known as O-C-vector) and
its variance-covariance matrix and
X, Yz the (estimated) vector of unknowns and its variance/covariance matrix.

Equation (2) yields a least-squares solution, i.e. it determines X while minimizing the square sum
of the residuals: || Ax —b ||°.

98 IVS 2006 General Meeting Proceedings



Markus Vennebusch:  Singular Value Decomposition for VLBI Simulations

In the language of linear algebra the least squares principle can be visualized geometrically by
vector spaces and projections on the so-called column space of A, i.e. the vector sub-space formed
by the columns of the design matrix A (see e.g. ADAM, [1] or STRANG/BORRE, [6]).

In the following a quite unknown (at least in geodesy) approach for a least-squares solution of
the system (1) is used which avoids normal equations and which reveals a lot more of geometrical
information about the adjustment problem. This approach is based on the direct analysis of the
design matrix by Singular Value Decomposition (SVD) which both preserves the numerical
stability of the system to be solved and yields important information about the impact of certain
observations on particular parameters.

The goal of these investigations is the application of an uncommon algebraic parameter estima-
tion method in order to get deeper insight into the adjustment process and to give a ‘geometrical’
interpretation of the adjustment process. Furthermore, interesting auxiliary means for the assess-
ment of the functional model can be derived from SVD and can be applied to the adjustment
of VLBI sessions. This approach can be regarded as further development of existing simulation
strategies. The information gained from these analyses will support the improvement of VLBI
schedules.

2. Basics of Linear Algebra

2.1. Least-squares Solutions of Overdetermined Systems of Linear Equations

For the solution of an (usually) inconsistent system of linear equations like (1) Linear Algebra
provides different approaches which are more or less numerically stable (see e.g. STRANG/BORRE,
[6]). As mentioned above in geodetic applications the most common approach is the computation
and solution of the associated system of normal equations. Other —so-called direct—methods as
e.g. QR-decomposition are directly applied to the design matrix and preserve the lengths of the
vectors associated with the system to be solved.

One of these length preserving, direct approaches is the singular value decomposition which
decomposes an arbitrary matrix of dimension m X n into

D O

_--,:
A=U-S5-V U(OO

)V' with oy > 09> ... >0, > 0. (3)

U is an orthogonal matrix of dimension m x m whose columns form the so-called left singular
vectors u;. S is an m X n-matrix only containing the so-called singular values o; on its main
diagonal and V is an orthogonal n X n-matrix whose columns v; form the so-called right singular
vectors. By definition, the singular values o; are ordered in decreasing order.

Although A might be of arbitrary dimension for the following only the overdetermined case
(m > n) is considered.

Decomposition (3) can be understood as a generalization of an eigenvalue decomposition of a
rectangular matrix. MEYER, [4] shows that the singular values are just the square roots of the
eigenvalues of A’ - A and the right singular vectors correspond to the eigenvectors of A’ - A. The
left singular vectors correspond to the eigenvectors of A - A'.

Especially in geophysical and geological applications the algebraic terms ‘row and column
space’ are replaced by the more descriptive terms ‘model space’ and ‘data space’, respectively,
since they depict the most important vector spaces associated with the adjustment process (see
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e.g. STRANG/BORRE, [6], MENKE, [3]).

After transforming the column space and the row space of A to the new bases formed by
the left and the right singular vectors respectively the system is called to be transformed to its
canonical form in which the least squares problem becomes simpler and thus more lucid (see e.g.
STRANG/BORRE, [6]).

2.2. Geometrical Interpretations

Instead of using equation (2) the decomposition of the design matrix (formula (3)) can be used
to solve (1) in a least-squares sense by:

T
u;-b
%x=V,-S;1.U -b= L v (4)
— Oi
n=1
where

7 denotes the rank of the system,
V, is an n X r matrix formed by the first 7 columns of V,
U, is an m X r matrix formed by the first  columns of U and
S, is an r X r matrix formed by the first r rows and columns of S.

Equation (4) shows that the least-squares solution is formed by superimposing r ‘slices’ v; i.e., the
it" ‘slice’ of the solution vector consists of the respective u;, v;, o; and the vector of observations b.

According to STRANG/BORRE, [6] the first r left singular vectors u; (i = 1,...,7) are called
canonical vectors and "reveal observations which should have been performed with larger weight”
since they have a large impact on the adjustment results. This can also be seen in the so-called
”Data resolution matrix” described below. The first r right singular vectors v; (i = 1,...,r)
depict those parameters (or linear combinations of parameters) which are best determined. Right
singular vectors v; belonging to zero- (or very small) singular values show parameters which are
totally undetermined.

2.3. Resolution Matrices

One of the analysis tools derived from SVD are so-called resolution matrices (see e.g. MENKE,
[3]): For example,
DRM =U, -U! (5)

is called Data Resolution Matrix (DRM) and serves as a projection operator onto the column
space/data space of the design matrix. This matrix (also known as ‘hat-matrix’ in statistics)
deserves a closer look since it provides a lot of information of the adjustment problem. The main
diagonal of this matrix reveals the importances of the observations and thus the sensitivity of
certain observations. Errors in observations with large importance values strongly impact the
estimation results.
Furthermore
MRM =V, -V} (6)

represents the so-called Model resolution Matrix (MRM) and serves as a projection operator
onto the row space/model space of the design matrix. The MRM can be used for better investi-
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gation of separability of the parameters compared to the well-known correlation matrix (see e.g.
Kocw, [2]).

3. Application Example

The methods described above have been applied to the analysis of the baseline Kokee - Wettzell
within the Multi-Intensive session RD0404 (04JUN16XA). During 24 hours 415 observations have
been performed on this baseline which have been used to estimate four parameters: (1) clock offset
for Kokee, (2) tropospheric zenith path delay for Kokee (3) and for Wettzell, and (4) dUT1.

The design matrix for this (quite unusual but appropriate) parametrisation has been generated
by using OCCAM 6.1 and the singular value decomposition has been performed with additional
software written in Fortran 95.

Figure 1 shows a part of the components of the singular value decomposition of the design
matrix of this session: the four right singular vectors vy through v, together with their respec-
tive singular values reveal the estimability and separability of the four estimated parameters (or
some linear combinations of them). These components can be used for so-called model space
investigations.

The first right singular vector v; (together with the corresponding singular value o and the
left singular vector u;, which is not shown here) mostly affects the second and the third parameter:
the tropospheric zenith path delay for both Kokee and Wettzell. The second component (v, o2
and up) mostly affects the fourth parameter, which is the earth rotation dUT1'. In the same
way vs, o3 and ug as well as v4, 04 and uy offer some insight into the generation of parts of
the solution vector concerning the remaining parameters. v4 and o4 depict the least precisely
determined parameter which is the clock offset at Kokee station.

A v, v

\
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0,=0.84 0,=0.73 0,=0.37 0,=0.05

Figure 1. Right singular vectors v; through v, and singular values o through o4 (order of parameters:
clock offset Kokee, zenith path delay Kokee and Wettzell, dUT1).

Figure 2 shows the main diagonal of the data resolution matrix (see equation (5)). Large values
reveal observations which are (due to their geometry) of special importance for the parameter
estimation process in general and thus need further considerations. Comparing Figure 2 with
a list of all observations performed on this baseline, for this parametrisation (i.e. for this set of
parameters to be estimated) especially observations to sources with low declinations are important.
Assuming the rule of thumb that baselines with a long equatorial extension are mostly suitable for

! Analysis of the corresponding left singular vector u would reveal observations which are mostly important for
earth rotation determination (since -in this case- the so-called ‘importances’ shown below almost give the same
information w2 is not explicitly shown here).
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Figure 2. “Importances” of observations for R0404-baseline Kokee - Wettzell

the determination of earth rotation this result agrees with the theoretical results e.g. described by
ScHUH, [5] and other authors.

4. Conclusions & Outlook

Investigations have shown that least-squares solutions of overdetermined systems of linear equa-
tions computed by singular value decomposition can be used as a tool for simulations in VLBI
data analysis. SVD yields ‘geometrical’ insight into the adjustment problem and gives important
information which can be used to improve VLBI observation schedules. Disadvantages of this
approach might be larger memory requirements and longer computation times compared to the
normal equation approach.

This method and the analysis tools derived from SVD will be applied to larger adjustment
problems / larger observation networks in order to better understand the analysis of VLBI ob-
servations and to improve scheduling in general. A user-friendly software tool (for any type of
adjustment problem) based on the graphical user interface-toolkit QT is being developed at GIUB
and will be applied to the analysis of other VLBI sessions. The results will be presented in the
future.
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